Topic 7

Audio Modeling by Non-negative Matrix Factorization

(Some slides are adapted from Gautham J. Mysore's presentation)

Structure in Spectrograms

- Spectral structure
- Temporal structure

Time

Piano Notes

Non-negative Matrix Factorization

ECE 477 - Computer Audition, Zhiyao Duan 2023

How to measure the approximation?

• Euclidean distance (Frobenius norm)

$$D(V \parallel WH) = \|V - WH\|_{F}^{2} = \sum_{i,j} (V_{ij} - (WH)_{ij})^{2}$$

• When V = WH, the distance is 0.

How to measure the approximation?

- Kullback-Leibler (KL) divergence $D(V \parallel WH) = \sum_{i,j} \left(V_{ij} \ln \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$
- KL divergence between two discrete probability distributions

$$D_{KL}(P \parallel Q) = \sum_{i} P(i) \ln \frac{P(i)}{Q(i)}$$

NMF

```
\min_{W,H} D(V \parallel WH)
```

where

- $V \in \mathbb{R}^{\geq 0, m \times n}$ $W \in \mathbb{R}^{\geq 0, m \times r}$ $H \in \mathbb{R}^{\geq 0, r \times n}$ $r \leq \min\{m, n\}$
- What is the possible rank of *V*?
- What is the possible rank of *WH*?

Singular Value Decomposition (SVD)

$$V = A\Sigma B^T$$

where

 $V \in \mathbb{R}^{m \times n}$ $A \in \mathbb{R}^{m \times m}$ $B \in \mathbb{R}^{n \times n}$

- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with nonnegative elements.
- rank(V)=the number of nonzero diagonal elements of Σ .

Why NMF?

- Nonnegative data
- *V* is an addition of some "components"

$$V = WH = \sum_{i=1}^{r} \boldsymbol{w}_{i} \boldsymbol{h}_{i}^{T}$$

where
$$W = [w_1, ..., w_r], H = [h_1, ..., h_r]^T$$

- Nonnegative components
- Easy to interpret

Low-rank Decomposition

- rank(V) = the number of nonzero diagonal elements of Σ in SVD.
- Let $\operatorname{rank}_+(V)$ be the smallest integer k for which there exists $\widehat{W} \in \mathbb{R}^{\geq 0, m \times k}$ and $\widehat{H} \in \mathbb{R}^{\geq 0, k \times n}$, such that $V = \widehat{W}\widehat{H}$.
- $\operatorname{rank}(V) \le \operatorname{rank}_+(V) \le \min\{m, n\}$
- In NMF, we take $V \approx WH$, where $W \in \mathbb{R}^{\geq 0, m \times r}$, $H \in \mathbb{R}^{\geq 0, r \times n}$
- $\operatorname{rank}(WH) \le \min\{\operatorname{rank}(W), \operatorname{rank}(H)\} \le r$
- In NMF, we use $r \ll \operatorname{rank}(V)$.

Low-rank Decomposition

Η

- rank(V) could be pretty large (about the same size as the number of frames), since harmonics do not decay at the same rate.
- rank(WH) = 4
- But we get pretty good approximation.

If r is too large

If r is too small

How to determine *r*?

• This is the "secrete" of NMF.

• Look at the data.

• Try different values, and choose the smallest that provides good enough reconstruction.

Convex Functions

• f(x) is convex if $\forall x_1, x_2$ and $\forall \lambda \in [0,1]$, we have $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Convex?

Convexity?

$$D(V \parallel WH) = \sum_{i,j} (V_{ij} - (WH)_{ij})^2$$

$$D(V \parallel WH) = \sum_{i,j} \left(V_{ij} \ln \frac{V_{ij}}{(WH)_{ij}} - V_{ij} + (WH)_{ij} \right)$$

- Convex functions w.r.t. either W only or H only, but not W and H together
- Lots of local minima

The Algorithms

- Alternating non-negative least squares
- Projected gradient descent
- Active-set method
- Block principal pivoting

- Multiplicative update rule
 - Easy to implement
 - Never get to negative values

Multiplicative Update

• For Euclidean distance

[Lee & Seung, 1999]

$$W_{ia} \leftarrow W_{ia} \frac{(VH^T)_{ia}}{(WHH^T)_{ia}}$$

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}}$$

Multiplicative Update

• For K-L divergence

[Lee & Seung, 1999]

$$W_{ia} \leftarrow W_{ia} \frac{\sum_{\mu} H_{a\mu} V_{i\mu} / (WH)_{i\mu}}{\sum_{\nu} H_{a\nu}}$$

$$H_{a\mu} \leftarrow H_{a\mu} \frac{\sum_{i} W_{ia} V_{i\mu} / (WH)_{i\mu}}{\sum_{k} W_{ka}}$$

• The multiplicative update rule decreases the cost function in each iteration.

• It converges to some local minimum.

• The convergence is pretty fast.

Problems of Multiplicative Updates

• Non-uniqueness issue

$$WH = (W\Sigma)(\Sigma^{-1}H)$$

 Solution: normalize W to make each column sum to 1 in each iteration.

- Zero elements won't get updated.
 - Solution: make sure W and H do not have zero elements in initialization.

Initialization

- Initialization affects the final result a lot, because the cost function is not convex.
- For simple data, random initialization is usually ok.
- For more complex data, use domain knowledge to initialize the dictionary.
 - E.g., for music transcription, initialize basis as a bunch of harmonic combs.

The Dictionary Models Source Timbre

Motorcycles

Frequency (Hz)

Question

• Can we use the source dictionaries to separate sound sources in the mixture signal?

Unsupervised Source Separation

• Decompose the mixture spectrogram directly

 $V_{mix} \approx W_{mix}H_{mix}$

- Figure out what columns of W_{mix} belong to what sources – Difficult, could be impossible, if sources have similar spectral profiles
- Extract those columns as W_1 ; Extract corresponding rows of H_{mix} as H_1
- Reconstruct the source signal $W_i H_i$

Supervised Source Separation

• Decompose training signals of all sources

 $V_{\text{train,1}} \approx W_1 H_{\text{train,1}}, \qquad V_{\text{train,2}} \approx W_2 H_{\text{train,2}}$

- Compose a new dictionary $W = [W_1, W_2]$
- Decompose mixture spectrogram using and fixing W, i.e., do not update W, but update H

$$V_{mix} \approx [W_1, W_2] \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$$

• Reconstruct the source signal $W_i H_i$

Supervised Source Separation illustration

ECE 477 - Computer Audition, Zhiyao Duan 2023

Semi-supervised Source Separation

• Decompose training signals of some source(s)

 $V_{\text{train},1} \approx W_1 H_{\text{train},1}$

- Compose a new dictionary $W = [W_1, W_2]$, where W_2 is randomized.
- Decompose mixture spectrogram fixing W_1 , i.e. do not update W_1 , but update W_2 and H.

$$V_{mix} \approx [W_1, W_2] \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$$

• Reconstruct the source signal $W_i H_i$.

Semi-supervised Separation illustration

ECE 477 - Computer Audition, Zhiyao Duan 2023

Look at NMF from another perspective!

- Think about the spectrogram *V* as a 2-d histogram of sound quanta.
- At each frame *t*, the sound quanta are distributed along the frequency axis according to *P*_t(*f*).
- The number of sound quanta at (t, f) is V_{ft} .
- The number of sound quanta at frame t is $V_t = \sum_f V_{ft}$.

Probabilistic Latent Component Analysis

[Smaragdis, Raj 2006]

ECE 477 - Computer Audition, Zhiyao Duan 2023

Generative Process

- 1. Choose a dictionary element according to $P_t(z)$
- 2. Choose a frequency from dictionary element z according to the distribution P(f|z)
- 3. Continue the process for V_t draws

How to estimate the parameters?

- Observation: a bunch of sound quanta distributed as V_{ft}
- Model:

$$P_t(f) = \sum_z P_t(f|z) P_t(z) \approx \sum_z P(f|z) P_t(z)$$

• Parameters: P(f|z) and $P_t(z)$

Maximum Likelihood Estimation

 The data likelihood, i.e., the joint probability of all sound quanta

 $\prod_{t} \prod_{f} P_t(f)^{V_{ft}}$

• Log data likelihood

$$\sum_{t} \sum_{f} V_{ft} \log P_t(f)$$

Expectation-Maximization

- E step: calculate the posterior distribution
- of latent components

$$P_t(z|f) = \frac{P(f|z)P_t(z)}{\sum_z P(f|z)P_t(z)}$$

 M step: maximize the expected complete data log-likelihood w.r.t. parameters P(f|z) and P_t(z).

$$\max_{P(f|z), P_t(z)} \mathbb{E}_{P_t(z|f)} \left\{ \sum_t \sum_f V_{ft} \log P_t(f, z) \right\}$$

Let's derive the update equations

• See whiteboard.