Topic 7

Audio Modeling by
Non-negative Matrix Factorization
(Some slides are adapted from Gautham J.
Mysore's presentation)

Structure in Spectrograms

- Spectral structure
- Temporal structure

Time

Piano Notes

Non-negative Matrix Factorization

$V \approx W H \quad$| $[$ Leee, Seung 2001] |
| :--- |
| $[$ Smaragdis, Brown 2003] |

How to measure the approximation?

- Euclidean distance (Frobenius norm)

$$
D(V \| W H)=\|V-W H\|_{F}^{2}=\sum_{i, j}\left(V_{i j}-(W H)_{i j}\right)^{2}
$$

- When $V=W H$, the distance is 0 .

How to measure the approximation?

- Kullback-Leibler (KL) divergence

$$
D(V \| W H)=\sum_{i, j}\left(V_{i j} \ln \frac{V_{i j}}{(W H)_{i j}}-V_{i j}+(W H)_{i j}\right)
$$

- KL divergence between two discrete probability distributions

$$
D_{K L}(P \| Q)=\sum_{i} P(i) \ln \frac{P(i)}{Q(i)}
$$

NMF

$$
\min _{W, H} D(V \| W H)
$$

where

$$
\begin{gathered}
V \in \mathbb{R}^{\geq 0, m \times n} \\
W \in \mathbb{R}^{\geq 0, m \times r} \\
H \in \mathbb{R}^{\geq 0, r \times n} \\
r \leq \min \{m, n\}
\end{gathered}
$$

- What is the possible rank of V ?
- What is the possible rank of $W H$?

Singular Value Decomposition (SVD)

$$
V=A \Sigma B^{T}
$$

where

$$
\begin{gathered}
V \in \mathbb{R}^{m \times n} \\
A \in \mathbb{R}^{m \times m} \\
B \in \mathbb{R}^{n \times n}
\end{gathered}
$$

- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with nonnegative elements.
- $\operatorname{rank}(V)=$ the number of nonzero diagonal elements of Σ.

Why NMF?

- Nonnegative data
- V is an addition of some "components"

$$
V=W H=\sum_{i=1}^{r} \boldsymbol{w}_{i} \boldsymbol{h}_{i}^{T}
$$

where $W=\left[\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{r}\right], H=\left[\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{r}\right]^{T}$

- Nonnegative components
- Easy to interpret

Low-rank Decomposition

- $\operatorname{rank}(V)=$ the number of nonzero diagonal elements of Σ in SVD.
- Let $\operatorname{rank}_{+}(V)$ be the smallest integer k for which there exists $\widehat{W} \in$ $\mathbb{R}^{\geq 0, m \times k}$ and $\widehat{H} \in \mathbb{R}^{\geq 0, k \times n}$, such that $V=\widehat{W} \widehat{H}$.
- $\operatorname{rank}(V) \leq \operatorname{rank}_{+}(V) \leq \min \{m, n\}$
- In NMF, we take $V \approx W H$, where $W \in \mathbb{R}^{\geq 0, m \times r}, H \in \mathbb{R}^{\geq 0, r \times n}$
- $\operatorname{rank}(W H) \leq \min \{\operatorname{rank}(W), \operatorname{rank}(H))\} \leq r$
- In NMF, we use $r \ll \operatorname{rank}(V)$.

Low-rank Decomposition

$V \approx W H$

- $\operatorname{rank}(V)$ could be pretty large (about the same size as the number of frames), since harmonics do not decay at the same rate.
- $\operatorname{rank}(W H)=4$
- But we get pretty good approximation.

H

If r is too large

- Let $r=7$

Reconstructed

Original

W^{T}

H

If r is too small

- Let $r=2$

Original
Reconstructed

W^{T}
H

How to determine r ?

- This is the "secrete" of NMF.
- Look at the data.
- Try different values, and choose the smallest that provides good enough reconstruction.

Convex Functions

- $f(x)$ is convex if $\forall x_{1}, x_{2}$ and $\forall \lambda \in[0,1]$, we have

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

- $f(x)=(x-3)^{2}$
- $f(x)=\frac{1}{x}, x>0$

Single local minimum (if it has a minimum)

Convex?

- $f(x, y)=x^{2}-y^{2}$

Convexity?

$$
\begin{gathered}
D(V \| W H)=\sum_{i, j}\left(V_{i j}-(W H)_{i j}\right)^{2} \\
D(V \| W H)=\sum_{i, j}\left(V_{i j} \ln \frac{V_{i j}}{(W H)_{i j}}-V_{i j}+(W H)_{i j}\right)
\end{gathered}
$$

- Convex functions w.r.t. either W only or H only, but not W and H together
- Lots of local minima

The Algorithms

- Alternating non-negative least squares
- Projected gradient descent
- Active-set method
- Block principal pivoting
- Multiplicative update rule
- Easy to implement
- Never get to negative values

Multiplicative Update

- For Euclidean distance

$$
\begin{aligned}
& W_{i a} \leftarrow W_{i a} \frac{\left(V H^{T}\right)_{i a}}{\left(W H H^{T}\right)_{i a}} \\
& H_{a \mu} \leftarrow H_{a \mu} \frac{\left(W^{T} V\right)_{a \mu}}{\left(W^{T} W H\right)_{a \mu}}
\end{aligned}
$$

Multiplicative Update

- For K-L divergence
[Lee \& Seung, 1999]

$$
\begin{aligned}
& W_{i a} \leftarrow W_{i a} \frac{\sum_{\mu} H_{a \mu} V_{i \mu} /(W H)_{i \mu}}{\sum_{\nu} H_{a \nu}} \\
& H_{a \mu} \leftarrow H_{a \mu} \frac{\sum_{i} W_{i a} V_{i \mu} /(W H)_{i \mu}}{\sum_{k} W_{k a}}
\end{aligned}
$$

Convergence

- The multiplicative update rule decreases the cost function in each iteration.

- It converges to some local minimum.
- The convergence is pretty fast.

Problems of Multiplicative Updates

- Non-uniqueness issue

$$
W H=(W \Sigma)\left(\Sigma^{-1} H\right)
$$

- Solution: normalize W to make each column sum to 1 in each iteration.
- Zero elements won't get updated.
- Solution: make sure W and H do not have zero elements in initialization.

Initialization

- Initialization affects the final result a lot, because the cost function is not convex.
- For simple data, random initialization is usually ok.
- For more complex data, use domain knowledge to initialize the dictionary.
- E.g., for music transcription, initialize basis as a bunch of harmonic combs.

The Dictionary Models Source Timbre

Male speech

Frequency (Hz)

Motorcycles

Frequency (Hz)

Question

- Can we use the source dictionaries to separate sound sources in the mixture signal?

$$
V_{m i x} \approx V_{1}+V_{2} \quad \begin{aligned}
& \text { Source } 1 \\
& \text { spectrogram }
\end{aligned}
$$

Mixture
spectrogram

$$
\approx W_{1} H_{1}+W_{2} H_{2} \quad \begin{aligned}
& \text { Source } 2 \\
& \text { spectrogram }
\end{aligned}
$$

$\begin{aligned} & \text { Source 1 } \\ & \text { dictionary }\end{aligned}=\left[W_{1}, W_{2}\right]\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right] \quad \begin{aligned} & \text { source 2 } \\ & \text { dictionary }\end{aligned}$

Unsupervised Source Separation

- Decompose the mixture spectrogram directly

$$
V_{m i x} \approx W_{m i x} H_{m i x}
$$

- Figure out what columns of $W_{\text {mix }}$ belong to what sources
- Difficult, could be impossible, if sources have similar spectral profiles
- Extract those columns as W_{1}; Extract corresponding rows of $H_{m i x}$ as H_{1}
- Reconstruct the source signal $W_{i} H_{i}$

Supervised Source Separation

- Decompose training signals of all sources

$$
V_{\text {train }, 1} \approx W_{1} H_{\text {train,1 }}, \quad V_{\text {train }, 2} \approx W_{2} H_{\text {train }, 2}
$$

- Compose a new dictionary $W=\left[W_{1}, W_{2}\right]$
- Decompose mixture spectrogram using and fixing W, i.e., do not update W, but update H

$$
V_{m i x} \approx\left[W_{1}, W_{2}\right]\left[\begin{array}{c}
H_{1} \\
H_{2}
\end{array}\right]
$$

- Reconstruct the source signal $W_{i} H_{i}$

Supervised Source Separation illustration

Train source dictionaries:

Trained dict. for Source 2

Decompose sound mixture:

Reconstruct Source 2:

Source dict.'s

Semi-supervised Source Separation

- Decompose training signals of some source(s)

$$
V_{\text {train }, 1} \approx W_{1} H_{\text {train }, 1}
$$

- Compose a new dictionary $W=\left[W_{1}, W_{2}\right]$, where W_{2} is randomized.
- Decompose mixture spectrogram fixing W_{1}, i.e. do not update W_{1}, but update W_{2} and H.

$$
V_{m i x} \approx\left[W_{1}, W_{2}\right]\left[\begin{array}{c}
H_{1} \\
H_{2}
\end{array}\right]
$$

- Reconstruct the source signal $W_{i} H_{i}$.

Semi-supervised Separation illustration

Train source dictionaries:

Decompose sound mixture:

Reconstruct Source 2:

[^0]
Look at NMF from another perspective!

- Think about the spectrogram V as a 2-d histogram of sound quanta.
- At each frame t, the sound quanta are distributed along the frequency axis according to $P_{t}(f)$.
- The number of sound quanta at (t, f) is $V_{f t}$.
- The number of sound quanta at frame t is $V_{t}=\sum_{f} V_{f t}$.

Probabilistic Latent Component Analysis

[Smaragdis, Raj 2006]
$\begin{aligned} & \text { Sound quanta } \\ & \text { distribution at } t\end{aligned} \longrightarrow P_{t}(f) \approx \sum_{z} P(f \mid z) P_{t}(z), ~(z)$

Dictionary Elements $P(f \mid z)$

Time-invariant sound quanta distribution for each component

0

Activation
weights
$P_{t}(z)$
Distribution of components

Generative Process

1. Choose a dictionary element according to $P_{t}(z)$
2. Choose a frequency from dictionary element z according to the distribution $P(f \mid z)$
3. Continue the process for V_{t} draws

How to estimate the parameters?

- Observation: a bunch of sound quanta distributed as $V_{f t}$
- Model:

$$
P_{t}(f)=\sum_{z} P_{t}(f \mid z) P_{t}(z) \approx \sum_{z} P(f \mid z) P_{t}(z)
$$

- Parameters: $P(f \mid z)$ and $P_{t}(z)$

Maximum Likelihood Estimation

- The data likelihood, i.e., the joint probability of all sound quanta

$$
\prod_{t} \prod_{f} P_{t}(f)^{V_{f t}}
$$

- Log data likelihood

$$
\sum_{t} \sum_{f} V_{f t} \log P_{t}(f)
$$

Expectation-Maximization

- E step: calculate the posterior distribution of latent components

$$
P_{t}(z \mid f)=\frac{P(f \mid z) P_{t}(z)}{\sum_{z} P(f \mid z) P_{t}(z)}
$$

- M step: maximize the expected complete data log-likelihood w.r.t. parameters $P(f \mid z)$ and $P_{t}(z)$.

$$
\max _{P(f \mid Z), P_{t}(z)} \mathrm{E}_{P_{t}(z \mid f)}\left\{\sum_{t} \sum_{f} V_{f t} \log P_{t}(f, z)\right\}
$$

Let's derive the update equations

- See whiteboard.

[^0]: ECE 477 - Computer Audition, Zhiyao Duan 2023

